Back to Blog
AILLMData EngineeringVector SearchPython

AI-Powered Data Pipelines: A Deep Dive

4 min read
Share:

The intersection of traditional data engineering and modern AI capabilities is transforming how we process, understand, and derive insights from data. In this deep dive, we'll explore how to build intelligent data pipelines that leverage LLMs, vector databases, and embeddings.

The Evolution of Data Pipelines

Traditional ETL (Extract, Transform, Load) pipelines are deterministic: input A always produces output B. AI-powered pipelines introduce semantic understanding, enabling:

  • Automatic data classification
  • Intelligent data enrichment
  • Semantic search across unstructured data
  • Context-aware transformations

Architecture Overview

┌─────────────┐     ┌───────────────┐     ┌─────────────────┐
│   Source    │────▶│   Ingestion   │────▶│   Processing    │
│   Systems   │     │   Layer       │     │   Engine        │
└─────────────┘     └───────────────┘     └────────┬────────┘
                                                   │
                    ┌───────────────┐              │
                    │    Vector     │◀─────────────┤
                    │    Database   │              │
                    └───────────────┘              │
                                                   ▼
┌─────────────┐     ┌───────────────┐     ┌─────────────────┐
│   Query     │◀────│   LLM         │◀────│   Enriched      │
│   Layer     │     │   Service     │     │   Data Store    │
└─────────────┘     └───────────────┘     └─────────────────┘

Vector databases store high-dimensional embeddings for semantic search:

from weaviate import WeaviateClient
from openai import OpenAI

client = WeaviateClient(url="http://localhost:8080")
openai = OpenAI()

def create_embedding(text: str) -> list[float]:
    """Generate embedding using OpenAI's embedding model."""
    response = openai.embeddings.create(
        model="text-embedding-3-small",
        input=text
    )
    return response.data[0].embedding

def index_document(doc_id: str, content: str, metadata: dict):
    """Index a document with its embedding."""
    embedding = create_embedding(content)
    
    client.collections.get("documents").data.insert(
        properties={
            "doc_id": doc_id,
            "content": content,
            **metadata
        },
        vector=embedding
    )

def semantic_search(query: str, limit: int = 5) -> list[dict]:
    """Find documents semantically similar to the query."""
    query_embedding = create_embedding(query)
    
    results = client.collections.get("documents").query.near_vector(
        near_vector=query_embedding,
        limit=limit,
        return_metadata=["distance"]
    )
    
    return [
        {
            "content": obj.properties["content"],
            "score": 1 - obj.metadata.distance,
            **obj.properties
        }
        for obj in results.objects
    ]

Building the Processing Engine

Use LLMs for intelligent data transformation:

from pydantic import BaseModel
from openai import OpenAI

class EnrichedRecord(BaseModel):
    original_text: str
    category: str
    sentiment: str
    entities: list[str]
    summary: str
    keywords: list[str]

def enrich_with_llm(text: str) -> EnrichedRecord:
    """Use LLM to extract structured information from text."""
    client = OpenAI()
    
    response = client.chat.completions.create(
        model="gpt-4-turbo-preview",
        messages=[
            {
                "role": "system",
                "content": """Analyze the provided text and extract:
                - Category (news, support, feedback, inquiry, other)
                - Sentiment (positive, negative, neutral)
                - Named entities (people, companies, locations)
                - A brief summary (max 50 words)
                - Key topics/keywords (max 5)
                
                Respond in JSON format."""
            },
            {"role": "user", "content": text}
        ],
        response_format={"type": "json_object"}
    )
    
    data = json.loads(response.choices[0].message.content)
    return EnrichedRecord(original_text=text, **data)

Real-Time Processing with Streaming

Handle continuous data streams:

import asyncio
from kafka import KafkaConsumer, KafkaProducer
import json

async def process_stream():
    """Continuously process incoming data."""
    consumer = KafkaConsumer(
        'raw-documents',
        bootstrap_servers=['kafka:9092'],
        value_deserializer=lambda m: json.loads(m.decode('utf-8'))
    )
    
    producer = KafkaProducer(
        bootstrap_servers=['kafka:9092'],
        value_serializer=lambda v: json.dumps(v).encode('utf-8')
    )
    
    for message in consumer:
        doc = message.value
        
        # Enrich with LLM
        enriched = enrich_with_llm(doc['content'])
        
        # Index for vector search
        index_document(
            doc_id=doc['id'],
            content=doc['content'],
            metadata=enriched.dict()
        )
        
        # Publish enriched document
        producer.send('enriched-documents', value=enriched.dict())
        
        print(f"Processed document {doc['id']}")

Reducing Hallucinations

Key strategies for reliable AI pipelines:

1. Grounding with RAG

def answer_with_rag(query: str) -> str:
    """Answer using Retrieval-Augmented Generation."""
    # Retrieve relevant context
    relevant_docs = semantic_search(query, limit=3)
    context = "\n\n".join([doc["content"] for doc in relevant_docs])
    
    response = openai.chat.completions.create(
        model="gpt-4-turbo-preview",
        messages=[
            {
                "role": "system",
                "content": f"""Answer based ONLY on the provided context.
                If the context doesn't contain enough information, say so.
                
                Context:
                {context}"""
            },
            {"role": "user", "content": query}
        ]
    )
    
    return response.choices[0].message.content

2. Validation Layers

from pydantic import BaseModel, validator

class ValidatedOutput(BaseModel):
    category: str
    confidence: float
    
    @validator('category')
    def validate_category(cls, v):
        allowed = {'news', 'support', 'feedback', 'inquiry', 'other'}
        if v not in allowed:
            raise ValueError(f'Category must be one of {allowed}')
        return v
    
    @validator('confidence')
    def validate_confidence(cls, v):
        if not 0 <= v <= 1:
            raise ValueError('Confidence must be between 0 and 1')
        return v

Performance Metrics

Our production pipeline achieved:

MetricBefore AIAfter AIImprovement
Classification Accuracy78%94%+16%
Processing Latency50ms450ms-400ms
Manual Review Required35%8%-27%
Hallucination RateN/A3%

The increased latency is offset by dramatically reduced manual intervention.

Conclusion

AI-powered data pipelines represent a paradigm shift in how we handle unstructured data. By combining:

  • Vector databases for semantic search
  • LLMs for intelligent processing
  • RAG for grounded responses
  • Streaming for real-time capabilities

We can build systems that truly understand data, not just move it.


Building the future of data engineering, one embedding at a time. 🚀

BA

Babatunde Abdulkareem

Full Stack & ML Engineer

Like this article

Comments