The intersection of traditional data engineering and modern AI capabilities is transforming how we process, understand, and derive insights from data. In this deep dive, we'll explore how to build intelligent data pipelines that leverage LLMs, vector databases, and embeddings.
The Evolution of Data Pipelines
Traditional ETL (Extract, Transform, Load) pipelines are deterministic: input A always produces output B. AI-powered pipelines introduce semantic understanding, enabling:
- Automatic data classification
- Intelligent data enrichment
- Semantic search across unstructured data
- Context-aware transformations
Architecture Overview
┌─────────────┐ ┌───────────────┐ ┌─────────────────┐
│ Source │────▶│ Ingestion │────▶│ Processing │
│ Systems │ │ Layer │ │ Engine │
└─────────────┘ └───────────────┘ └────────┬────────┘
│
┌───────────────┐ │
│ Vector │◀─────────────┤
│ Database │ │
└───────────────┘ │
▼
┌─────────────┐ ┌───────────────┐ ┌─────────────────┐
│ Query │◀────│ LLM │◀────│ Enriched │
│ Layer │ │ Service │ │ Data Store │
└─────────────┘ └───────────────┘ └─────────────────┘
Implementing Vector Search
Vector databases store high-dimensional embeddings for semantic search:
from weaviate import WeaviateClient
from openai import OpenAI
client = WeaviateClient(url="http://localhost:8080")
openai = OpenAI()
def create_embedding(text: str) -> list[float]:
"""Generate embedding using OpenAI's embedding model."""
response = openai.embeddings.create(
model="text-embedding-3-small",
input=text
)
return response.data[0].embedding
def index_document(doc_id: str, content: str, metadata: dict):
"""Index a document with its embedding."""
embedding = create_embedding(content)
client.collections.get("documents").data.insert(
properties={
"doc_id": doc_id,
"content": content,
**metadata
},
vector=embedding
)
def semantic_search(query: str, limit: int = 5) -> list[dict]:
"""Find documents semantically similar to the query."""
query_embedding = create_embedding(query)
results = client.collections.get("documents").query.near_vector(
near_vector=query_embedding,
limit=limit,
return_metadata=["distance"]
)
return [
{
"content": obj.properties["content"],
"score": 1 - obj.metadata.distance,
**obj.properties
}
for obj in results.objects
]
Building the Processing Engine
Use LLMs for intelligent data transformation:
from pydantic import BaseModel
from openai import OpenAI
class EnrichedRecord(BaseModel):
original_text: str
category: str
sentiment: str
entities: list[str]
summary: str
keywords: list[str]
def enrich_with_llm(text: str) -> EnrichedRecord:
"""Use LLM to extract structured information from text."""
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[
{
"role": "system",
"content": """Analyze the provided text and extract:
- Category (news, support, feedback, inquiry, other)
- Sentiment (positive, negative, neutral)
- Named entities (people, companies, locations)
- A brief summary (max 50 words)
- Key topics/keywords (max 5)
Respond in JSON format."""
},
{"role": "user", "content": text}
],
response_format={"type": "json_object"}
)
data = json.loads(response.choices[0].message.content)
return EnrichedRecord(original_text=text, **data)
Real-Time Processing with Streaming
Handle continuous data streams:
import asyncio
from kafka import KafkaConsumer, KafkaProducer
import json
async def process_stream():
"""Continuously process incoming data."""
consumer = KafkaConsumer(
'raw-documents',
bootstrap_servers=['kafka:9092'],
value_deserializer=lambda m: json.loads(m.decode('utf-8'))
)
producer = KafkaProducer(
bootstrap_servers=['kafka:9092'],
value_serializer=lambda v: json.dumps(v).encode('utf-8')
)
for message in consumer:
doc = message.value
# Enrich with LLM
enriched = enrich_with_llm(doc['content'])
# Index for vector search
index_document(
doc_id=doc['id'],
content=doc['content'],
metadata=enriched.dict()
)
# Publish enriched document
producer.send('enriched-documents', value=enriched.dict())
print(f"Processed document {doc['id']}")
Reducing Hallucinations
Key strategies for reliable AI pipelines:
1. Grounding with RAG
def answer_with_rag(query: str) -> str:
"""Answer using Retrieval-Augmented Generation."""
# Retrieve relevant context
relevant_docs = semantic_search(query, limit=3)
context = "\n\n".join([doc["content"] for doc in relevant_docs])
response = openai.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[
{
"role": "system",
"content": f"""Answer based ONLY on the provided context.
If the context doesn't contain enough information, say so.
Context:
{context}"""
},
{"role": "user", "content": query}
]
)
return response.choices[0].message.content
2. Validation Layers
from pydantic import BaseModel, validator
class ValidatedOutput(BaseModel):
category: str
confidence: float
@validator('category')
def validate_category(cls, v):
allowed = {'news', 'support', 'feedback', 'inquiry', 'other'}
if v not in allowed:
raise ValueError(f'Category must be one of {allowed}')
return v
@validator('confidence')
def validate_confidence(cls, v):
if not 0 <= v <= 1:
raise ValueError('Confidence must be between 0 and 1')
return v
Performance Metrics
Our production pipeline achieved:
| Metric | Before AI | After AI | Improvement |
|---|---|---|---|
| Classification Accuracy | 78% | 94% | +16% |
| Processing Latency | 50ms | 450ms | -400ms |
| Manual Review Required | 35% | 8% | -27% |
| Hallucination Rate | N/A | 3% | — |
The increased latency is offset by dramatically reduced manual intervention.
Conclusion
AI-powered data pipelines represent a paradigm shift in how we handle unstructured data. By combining:
- Vector databases for semantic search
- LLMs for intelligent processing
- RAG for grounded responses
- Streaming for real-time capabilities
We can build systems that truly understand data, not just move it.
Building the future of data engineering, one embedding at a time. 🚀